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ABSTRACT 

We present a value of information (VOI) 

methodology for the geothermal exploration problem. 

Our work shows how the non-uniqueness of 

geophysical data affects its value (usefulness) to 

decision-makers who have to make decisions based 

on uncertain information. We evaluate the 

information reliability with geophysical forward-

modeling, thereby simulating the physics and 

limitations associated with the measurement 

technique.  To demonstrate the method, we quantify 

how reliable magnetotellurics (MT) surveys are at 

detecting permeable zones containing hot fluid. We 

vary the reservoir’s geological and petro-physical 

properties, such as reservoir fluid temperatures, 

effective matrix permeabilities and fluid salinity. 

There is a non-unique relationship between electrical 

conductivity (what MT measures) and permeability 

of reservoir rock and/or the reservoir fluid. Our 

generic example is used to generate VOI results that 

estimate the uncertainty associated with reservoir 

properties inferred from MT measurements. 

INTRODUCTION 

Value of Information (VOI), from the field of 

decision analysis, quantifies how relevant and 

reliable any particular information source is, given a 

decision with a highly uncertain outcome. VOI can 

be used to justify the costs of collecting the proposed 

data. This has been demonstrated in the literature for 

oil exploration (see review by Bratvold et al, 2009), 

but we apply it here to the geothermal energy 

exploration decision. Our work illustrates the 

implementation of a VOI methodology given the 

uncertainties of geothermal exploration and 

considering magnetotelluric (MT) data.  Any aspect 

of this demonstration could be refined to better 

represent an actual field case or a different source of 

information (e.g., temperature or heat flow 

measurements).   

 

Initially we consider a simple exploration decision 

regarding a possible resource: Should we produce 

(drill) or not? We assume that the decision outcome 

only depends on the question “is it hot and will it 

flow?” We assume that porosity is a good proxy for 

permeability, and that porosity and temperatures can 

be obtained from the electrical resistivities estimated 

by inverting MT data.  

 

VOI estimates the possible increase in expected 

utility by gathering information.  In its simplest form, 

the VOI equation can be expressed as: 

                                 (1)  
where value V, is the metric used to quantify the 

outcome of a decision; the higher the value, the more 

“successful” an outcome of a decision is. This paper 

is organized according to eq. 1. First, Vprior will be 

addressed by describing how the prior uncertainty of 

the subsurface is represented with multiple 

realizations of Earth models. Second, we will 

describe how the value with information (Vwith 

information) can be estimated by simulating the MT 

response on the prior models. Specifically, we devise 

a method for estimating MT’s reliability to 

distinguish economic versus uneconomic geothermal 

reservoirs.  

PRIOR MODELS: UNCERTAINTY IN BRINE 

SALINITY, TEMPERATURE AND MATRIX 

POROSITY  

We define a group of prior models that represent the 

earth in 3 layers: overburden, reservoir, and basement 

(Fig. 1). The overburden represents the layer from the 

surface to 1.5 km depth. The top of the reservoir is at 

1.5 km depth is 500 m thick. The basement layer 

extends from 2  to 250 km depth (which represents 5 

skin depths). Figure 1 and subsequent figures plot 

only the top 10km. The electrical resistivities 

assigned to the overburden and basement layers are 

fixed at 100 and 255 ohm-m respectively. 

 



 
Figure 1: Example of 3 layer electrical resistivity 

model (overburden, reservoir, & 

basement). 21 MT Stations are shown on 

the surface 

 

To capture the uncertainty in reservoir properties, 

many different electrical resistivities are assigned to 

the middle layer which represents the potential 

geothermal reservoir. We utilize laboratory-derived 

rock physics relationships (Ucok et al, 1980) to 

describe how the salinity and temperature of the brine 

affect its electrical resistivity. The prior models 

represent varying porosity/permeability values of the 

bulk matrix. We assume Archie’s equation to 

compute the rock’s bulk resistivity given porosities 

and brine resistivity. 

 
Figure 2: Log10 Bulk Resistivity as a function of 

porosity of matrix, and salinity and 

temperature of the brine. Each reservoir 

resistivity value belongs to 1 of the 3 

economic categories: economic (green), 

marginal (yellow), and uneconomic (red). 

 

Figure 2 shows 3 different salinities (3%, 10%, and 

20% concentrations), 3 different porosity values 

(0.95%, 1.68% and 5%) at brine temperatures 

ranging 25-375˚C. Using Carmen-Kozeny (Carmen, 

1956), these porosity values could correspond to the 

following permeabilities: 10
-6

, 10
-8

, and 10
-9

 Darcy). 

We generate 135 prior models where each model’s 

reservoir layer is assigned the electrical resistivity 

value from one resistivity marker in Figure 2. For 

example, Figure 1 shows a reservoir resistivity of 

1000 ohm-m, corresponding to 0.95% porosity, 

100˚C and 10% NaCl concentration (according to 

empirical functions from Ucok et al, 1980).  

 

Each of these models is associated with an economic 

viability category. Three regions describing the 

reservoirs’ potential profitability are defined: 

economic (porosity ≥ 5% and temperature ≥ 200˚C), 

marginally economic (1.68% ≤ porosity < 5% and 

150˚≤ temperature < 200˚C) or non-economic 

(porosity <1.68% and temperature <150˚C) 

geothermal resources. These regions are shown in 

green, yellow and red respectively in Figure 2. These 

represent the true economic viability category θ:  

                                        (2)  

where each of the prior models belongs to one of 

these categories. Let us represent each model by 

                      (3)  
where vector z contains the electrical resistivity, 

temperature, porosity, and any other relevant 

properties of the model and t indexes all T=135 prior 

models. These categories are crude representations of 

what the value outcome of each model could be. 

These categories could be replaced by a function that 

relates the permeability/porosity and temperature to 

the production potential, but we choose this 

simplification to demonstrate our methodology.  

 

Figure 3 shows resistivity histograms for all the 

models in Figure 2. All three categories span the 

log10 electrical resistivity range 1.3 to 1.6. These 

overlaps illustrate that electrical resistivity cannot 

uniquely determine whether the reservoir is “hot and 

will flow.” 

 
Figure 3: Histogram of log10 electrical resistivity of 

the reservoir layer (all curve markers in 

Figure 2). 



 

We will now describe how each prior model is linked 

to possible economic outcomes. This will be 

summarized in the quantity Vprior, which translates 

our prior uncertainty (or current state of information) 

into an expected (or average) outcome from our 

decision.  

VPRIOR: THE BEST DECISION OPTION GIVEN 

PRIOR UNCERTAINTY   

Decision analysis concepts are often described in 

terms of lotteries and prizes (Pratt et al, 1995). By 

choosing to drill or not, a decision maker is choosing 

whether or not to participate in a lottery with certain 

perceived chances of winning a prize (drilling into a 

profitable reservoir); however, this lottery also 

involves the chances of losing money (drilling into an 

uneconomic reservoir). By utilizing Vprior, a decision-

maker can logically determine when one should 

participate in this lottery given both the prior 

uncertainties and possible gains and losses.  

 

The value metric allows for comparison between 

outcomes from different decision alternatives, which 

can be represented by function ga.  

   
                  

      

                            

(4)  

We assume only 2 possible alternatives (a = 1 or 2): 

drill/produce the reservoir or do nothing. Table 1 

defines the 6 possible outcomes, which is a result of 

these 2 decision alternatives and the 3 possible 

reservoir categories. The columns represent the 

decision alternatives (a=1 and a=2) and the rows the 

different subsurface categories (ƟE, ƟM, ƟU).  

 

 Table 1: Table of nominal value outcomes for the 2 

possible decision options (columns) and 3 

possible economic viability categories of 

the unknown subsurface (rows). 

Decision option→ 

↓Reservoir Category 

a = 1  

(drill) 

a = 2  

(do 

nothing) 

θi= economic (E) $200 $0 

θi= marginal (M)  $50 $0 

θi= uneconomic (U) $0 to -$500 $0 

 

Table 1 values do not reflect realistic gains (payout 

when you produce an economic reservoir) or losses 

(loss on investment when you drill an uneconomic 

reservoir). Instead, VOI results will be presented as a 

function of the ratio of the loss to gain (loss range 

shown in Table 1); for example, $200 means that 

there is a possible profit (revenue – cost) of $200 if 

an economic reservoir is produced. Although not 

logical, the range of “losses” includes a gain (positive 

outcome).  This is simply for demonstration purposes 

so that the behavior of the VOI quantities can be 

visualized. Realistic gains and losses for a particular 

field site can be easily substituted in Table 1 and into 

the methodology. 

 

If a continuous function were established to link each 

prior model to its value outcome, the average 

outcome for models within a category will need to be 

calculated for both possible alternatives (a=1 and 

a=2) 

 
       

 

  
   

       

  

   

     

              

(5)  

where Ti represents the total number of models 

belonging to each of the three categories.  

 

All the necessary quantities have been introduced to 

calculate Vprior.  

 

           
 

                

 

   

     

      

(6)  

In words, Vprior quantifies the best the decision-

makers can do with the current uncertainty (no MT 

data has been collected), which are reflected in the 

prior probabilities         .  Vprior identifies which 

decision alternative gives on average the best 

outcome (done through the    
 

). When considering 

a specific location for geothermal exploration, these 

prior probabilities should come from a geologist 

and/or other experts with knowledge of the geologic 

structure and history. For now, we use the number of 

models in each of the three categories depicted in 

Figure 3, such that             ,      
        and             . 

 

The green line of Figure 4 graphs the resulting Vprior, 

given the values of the possible gains/losses shown in 

Table 1 and the prior models of Figure 3. The x-axis 

of Vprior represents the ratio of the loss versus the 

gain, such that the losses become less as you move to 

the right. A ratio = 0 indicates an unrealistic but ideal 

situation: the potential for loss is 0 regardless of the 

potential for gains. A ratio of -1.0 indicates that one 

could loose one dollar for every dollar that could be 

gained. Returning to the lottery example, when Vprior 

is 0, the decision-maker should “not participate in the 

lottery” (i.e. don’t drill) given the current state of 

information. Vprior=0 tells the decision-maker that the 

decision alternative to “do nothing” will yield the 

higher outcome on average. Vprior=0 reflects the 

potential for large losses when you “participate in the 

lottery” or drill to produce a geothermal reservoir. 

The decision-maker would only be wise to participate 

in the lottery when Vprior > 0, which for this particular 

set-up is when the absolute value of the loss is 0.5 or 

less of the possible gain. 



 
Figure 4: Graph depicting Vprior (green), Value with 

Perfect information (VPI- red), and Value 

of Perfect Information (VOIPI -blue)  

VALUE OF PERFECT INFORMATION (VOIPI): 

UPPER BOUND ON THE INFORMATION’S 

VALUE 

Also shown in Figure 4 are the quantities of value 

with perfect information (VPI, red curve) and value of 

perfect information (VOIPI, blue curve). The value of 

perfect information can be calculated using Equation 

1, by substituting in VPI for the value with 

information (Vwith information).  VOIPI assumes that an 

information source exists that will always identify the 

correct economic viability category θi without errors. 

Like Vprior, VPI only depends on the prior uncertainty 

and potential gains/losses of the problem.  

 

              

 

   

    
 
         

(7)  

Here, we see that for each reservoir category θi, we 

can choose the best decision alternative a (this is 

reflected in    
 

 being performed before the 

average). VPI is plotted in red in Figure 4, which 

shows that it is invariant to the loss-gain ratio. This is 

because if we know the reservoir is uneconomic, we 

will always choose not to participate in the lottery; 

therefore, we remove the chance of loss by collecting 

perfect information. The blue line of Figure 4 plots 

the resulting VOIPI, which increases as Vprior 

decreases (Equation 1). With our current state of 

information, we would not enter the lottery when the 

potential losses were too high relative to the gains.  

But with a flawless information source to allow us to 

avoid these losses, we may choose to participate in 

the lottery.  Since it assumes error-free information, 

the VOIPI quantity will give an upper bound on what 

we could expect for any information source. Now we 

consider imperfect MT data and we estimate its 

reliability when distinguishing between the three 

possible geothermal categories θi. 

SIMULATING POSSIBLE MT DATA 

COLLECTION, NOISE AND INVERSION 

VOI is used to determine whether particular data is 

worth purchasing and thus, it must be calculated 

before the intended data is collected. To estimate the 

reliability of the data to reveal the principal 

uncertainty to the decision (θi for our example), one 

must either use a suite of calibrated field data or use 

synthetic models and forward modeling to predict the 

data. We perform the later and utilize the prior 

models which represent our current uncertainty.    

 

The workflow to estimate the VOI of MT can be 

described in 7 steps.  

1. The MT response is forward modeled for each 

prior model. 

2.  5% random Gaussian noise is added to each 

response. 

3. Geophysical inversion is performed for each 

noisy data set; one inverted electrical resistivity 

model is obtained for every prior model. 

4. For each inversion result, automatic 

interpretation is used to locate the reservoir 

boundaries and select its resistivity ρ. 

5. The Data Likelihood/Reliability is calculated by 

comparing the reservoir’s inverted and 

interpreted electrical resistivity (ρ) to its prior 

model’s original economic viability θi. 
6. The Information Posterior is calculated: use 

Bayes rule to estimate the probability of any 

given economic category θi given an inverted 

electrical resistivity (ρ). 

7. Calculate the value of imperfect information 

(VOIII) using the Information Posterior. 

For steps 1 and 3 we utilize a 2D MT code based on 

Constable, et al. (1987). For Step 4, a gradient 

algorithm locates the 2 greatest vertical resistivity 

changes and uses these to define the top and bottom 

of the reservoir layer. It selects all the resistivities 

that are between the top and bottom since they all 

define the inferred reservoir layer.  

 

Figure 1 (true model) differs from Figure 5 

(inverted/recovered model) for several reasons.  First, 

MT induces horizontal currents in the subsurface at 

frequencies between 0.01 to 100 Hz (Trainor-Guitton 

& Hoversten, 2011). Although these currents have 

deep penetration, they are insensitive to thin resistors 

(such as the low porosity and low temperature 

reservoir shown in Figure 1). Second, the MT 

problem is usually an underdetermined problem: 

there are fewer data points than resistivity parameters 



that need to be resolved. The inversion process 

smoothes the resistivity structures (through 

regularization) in order to mitigate problems caused 

by the underdetermined condition. Therefore, the 

recovered models will not perfectly match the prior 

model from which the data came.  

 

 
Figure 5: Inversion result of Figure 1.  

Porosity=0.95%, temperature=100°C and 

salinity=10%. 

 

The top and bottom of Figure 6 plots the result of 

Steps 5 (the data likelihood) and 6 (the information 

posterior) respectively. Both plot the log10 

interpreted electrical resistivity on the x-axis. The 

data likelihood (which is also the reliability) is 

expressed as: 

                

                   

(8)  

where j indexes the bins of the electrical resistivity. 

 
Figure 6: Data Likelihood/Reliability (top). 

Information Posterior (bottom). X-axis is 

the inverted reservoir electrical resistivity 

(log10). 

 

As expected most of the low inverted resistivities 

(log10 ρ < 1.6) come from the economic geothermal 

category (green). However, in Figure 6 some 

economic models have interpreted reservoir 

resistivity as high as 2.2.  When we compare this to 

Figure 3, we see that none of economic models have 

log10 resistivities higher than ~1.6.  This represents 

some errors that have been introduced by the noisy 

MT, and by the inversion and interpretation 

processes. 

 

The information posterior (bottom of Figure 6) is the 

chronological reverse of the data likelihood (eq. 7): 

                

                  

(9)  

where now we have probability of any of the 

economic viability categories occurring given a 

particular bin value for the inverted ρ. This is the 

resistivity’s “message” regarding economic viabilty. 

Notice that very low resistivity values (log10 ρ < 1.4) 

show a 100% probability of being associated with an 

economically viable reservoir.  The resistivity 

message becomes quite ambiguous between 1.6 and 

1.8 because the probabilities for the 3 categories are 

roughly equivalent. Previously, it was noted that the 

range of 1.3 to 1.6 in the prior models includes all 

three categories (Figure 3).  

 

The smoothing effect of the inversion is noted in the 

range change of log10 resistivity values recovered 

versus those in the original prior models. Figure 3 

(the values used in the prior models) show a range of 

0.94 to 3.75 whereas Figure 6 shows that the 

recovered (inverted and interpreted) values only 

range from 1.0 to 2.3. 

 

The information posterior is the form actually used to 

calculate the value with imperfect information VII. 

 
              

 

   

 

    
 

                      

 

   

   

(9)  

Here, the posterior accounts for how often one may 

incorrectly infer a subsurface category given the 

inverted electrical resistivity. The posterior is used to 

weigh the averaged outcome of each alternative and 

category combination       .  Since the decision is 

made after resistivity data has been collected, the best 

alternative (   
 

) is chosen given the interpreted 

category. Lastly, VII is weighted by the marginal 

probability         , how often any of the 

particular inverted resistivities occur relative to other 

resistivity bins. 

 

Figure 7 plots both the value with imperfect 

information (VII) and the value of imperfect 

information (VOIII) along with the previously seen 

Vprior and VOIperfect. The value of imperfect 

information is calculated using Equation 1 where 

now the VII is used in place of the generic term of 

Vwith information. As expected, VOIII (cyan) is lower than 



VOIperfect (blue) at all loss-gain ratios. This 

demonstrates how the highest value outcome will not 

be realized because of the imperfectness of the data 

that can mislead the decision maker about the 

economic viability of the reservoir. 

 
Figure 7: Value with imperfect information 

(magenta) and Value of imperfect 

information (cyan). VOIperfect (blue) and 

Vprior (green) also plotted for comparison 

(from Figure 4). 

 

From a loss-gain ratio of 0 to -0.5, the value of 

imperfect information (cyan) steeply increases due to 

the Vprior (green) sharply decreasing. Once Vprior=0, 

VOIimperfect is determined solely by VII (magenta).  

COMPLEXITY ADDED TO PRIOR MODELS: 

THIN CONDUCTOR ABOVE RESERVOIR 

In an effort to add more realism to our example, we 

introduce more subsurface complexity to our prior 

models by adding a thin conductor above the 

reservoir layer. Figure 8 shows the same model 

depicted in Figure 1 (porosity = 0.95%, 

temperature=100C, salinity= 10% NaCl 

concentration) but now immediately above the 

reservoir layer is 300m thick, 10 ohm-m layer. This 

layer could represent hydrothermal alteration. 

Cumming (2009) describes how low resistivity 

structures are “consistently found over geothermal 

reservoirs” but can also be indicative of sediments 

related to volcanic valleys. Either way, a thin 

conductor will likely make the MT’s “message” more 

ambiguous regarding the economic viability of the 

reservoir because the MT measurements will have 

less sensitivity to the reservoir.  In other words, the 

conductor will degrade the reliability of the 

interpreted electrical resistivity ρ to identify θi. 

 

 
Figure 8: Prior Model same as Figure 1 but with a 

300m 10 ohm-m layer above “reservoir 

layer”  

The 10 ohm-m layer is added to all prior models. The 

first step of VOI is to evaluate the Vprior utilizing the 

prior uncertainties and value outcomes from the 

decisions alternatives. Although we have added 

complexity to the prior models, we will keep the 

prior uncertainties of the different economic 

categories the same as demonstrated before (ie 

            ,              and 

            .). Specifically, the reservoir 

layer, which determines the outcome for the 

considered decision, remains the same all the prior 

models. And the decision alternatives will also be 

kept the same (Table 1).  Therefore, Vprior and 

VOIperfect of Figure 4 still apply to this example.  

VOIII WITH PRIOR MODELS WITH THIN 

CONDUCTOR 

The same workflow (Steps 1-7 above) is applied to 

simulate possible MT data collection, inversion and 

interpretation. Figure 9 shows the inversion result for 

the model in Figure 8. Figure 9 differs significantly 

from Figure 5 due to the addition of the conductor. 

 

 
Figure 9: Inversion result noisy data from the Figure 

8 model. Porosity=0.95%, 

temperature=100 and salinity=10. 

 

The data likelihood (reliability) and the information 

posterior are calculated in the same way as described 

previously. The result is shown in Figure 10. A 

visible gap is seen at resistivity values between 1.6 

and 1.8.  This resistivity range is the yellow value in 

the Figure 9 inversion, which the automatic 

interpretation algorithm interprets as the reservoir 



layer boundaries. Therefore, this value is not ever 

interpreted as the reservoir layer resistivity. 

 
Figure 10: Data Likelihood (top) and Information 

Posterior (bottom) utilizing prior models 

that include a 300m 10 ohm-m conductor 

above the reservoir layer. 

Another feature noticeable in Figure 10 is that now 

some uneconomic models have very low resistivity, 

this is different from the results in Fig. 6.  Before, the 

lowest log10 interpreted electrical resistivity was 1.5. 

Figure 10 shows that the thin conductor has caused 

uneconomic models to have interpreted log10 

electrical resistivities of 1.2. Figure 9 demonstrates 

how this misinterpretation occurs since the MT 

inversion cannot delineate the 4 distinct layers 

present in Figure 8. 

 

We then utilize the posterior of Figure 10 into Eq. 9 

which results in the VII (magenta) and ultimately 

VOIII (cyan) shown in Figure 11. The largest 

difference between Figure 7 (VOI when no conductor 

exists) and Figure 11 is how VII decreases more 

sharply with increasing loss (left on the x-axis).  This 

reflects how more misinterpretations occur when a 

thin conductor is introduced to all prior models. 

 
Figure 11: VII and VOIII utilizing prior models that 

include thin conductor above reservoir 

layer. Vprior and VOIperfect are the same 

from Figure 4 since the value outcomes 

and prior uncertainties have not changed.  

 

CONCLUSIONS AND FUTURE WORK  

We have presented a general VOI method to 

determine if MT data should be purchased. Our work 

shows how the non-uniqueness of geophysical data 

affects its value (usefulness) to decision-makers who 

have to make decisions based on uncertain 

information. This method can be applied to real-

world geothermal exploration situations to evaluate 

the relevancy and reliability of MT to assess the 

principal uncertainty associated with the production 

decision. Two examples were presented that 

demonstrate the sensitivity of VOIII to the reliability 

of the information, specifically the types of prior 

models used to forward simulate the MT data. 

 

Future work will include the spatial uncertainty of the 

reservoir properties, such as thickness, depth or 

spatial extent of a possible reservoir to be evaluated. 

Depth is of high importance in geothermal 

exploration since it is linked to the cost of producing 

the reservoir. The VOI results from this new work 

will be independent of what we presented here 

because we will be evaluating how well MT can 

assess the thicknesses and spatial extent of the 

reservoir, not how well it can determine if a reservoir 

“is hot and will it flow.”  

 

This research was performed under the auspices of 

the U.S. Department of Energy by Lawrence 

Livermore National Laboratory under Contract No. 

DE-AC52-07NA27344. LLNL-CONF-612492 
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